专访腾讯姚建华腾讯 AI Lab 为何瞄准单细胞蛋白质组学
借此契机,雷峰网近期对话腾讯 AI Lab 科学家姚建华和研究员杨帆,他们是三篇论文的共同作者。在访谈中,他们深入阐述了这些论文背后的技术突破、应用价值和未来的研究规划。
他们解释道,这三篇论文的创新之处在于,它们首次为单细胞蛋白质组提供了全面的数据知识库和系统的AI分析方法。
论文一中建立的 SPDB 数据库,通过标准化处理不同来源的单细胞蛋白质组学数据,使得数据易于比较和分析,是目前全球数据量最大、覆盖技术和数据集最为广泛的单细胞蛋白质数据库。
论文二中的 scPROTEIN 框架,针对单细胞蛋白组数据的特殊性提出了解决方案,能够处理数据中的不确定性、缺失值、批次效应和噪声问题。为基于单细胞蛋白质组的肿瘤发生发展机制研究、药物靶点发现和肿瘤早筛和微环境研究提供重要的AI辅助作用。
第三篇论文中提出的 scpDeconv 方法,是一种全新的反卷积方法,能够从“组织蛋白质组”数据中挖掘出特定细胞类型比例,为肿瘤辅诊和预后分析提供了新的视角,是三篇论文中与临床应用最为贴近的一项成果。
姚建华,作为腾讯 AI Lab 的 AI 医疗首席科学家,补充道:
“AlphaFold 在蛋白质结构领域取得了令人瞩目的成就,它主要关注单个蛋白质的结构和功能,或几个蛋白质之间的相互作用。
而我们的研究则聚焦于细胞内所有蛋白质的表达模式,这些信息反映了整个细胞的状态和微环境,使我们的工作更加贴近临床应用和疾病机制的探索。”
值得一提的是,当我们在讨论论文成果的同时,一个更深远的议题逐渐浮现:成立于2016年的腾讯 AI Lab,是否有能力在接下来的五年中,引领生命科学领域的未来发展?
延伸阅读:
暂无内容!
评论列表 (0条):
加载更多评论 Loading...